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Summary: The asymmetric preparation and metallation of binaphthylcyclopentadiene 1 is described. The key step 

in this four step synthesis is an asymmetric nickel-catalyzed coupling reaction. 

Chiral cyclopentadienyl ligands are becoming recognized as potent chiral auxiliaries for asymmetric 

organometallic reactions.lv2 Despite their promise, relatively few chiral cyclopentadienyl ligands have been 

prepared when compared to the many examples of other chiral ligands such as phosphines, amines and alcohols.3 

Due to the advantages inherent in Q-symmetric annulated cyclopentadienyl ligands,4 we are engaged in the 

design, synthesis and application of such ligands in asymmetric synthesis. In order to provide ligands which are 

less sterically encumbered than those based on the bicyclo[2.2.2]octane framework,*a we undertook the synthesis 

of a new ligand class based on binaphthyl scaffolding. We report here the facile preparation of either enanriomer 

of the new C2-symmetric, axially chiral binaphthylcyclopentadiene ligand 1. 

W-(-)-l (W-(+)-l 

We based our synthetic strategy for the synthesis of 1 on the established bisalkylation of 

cyclopentadienela35 by an appropriate binaphthyl moiety. The highly enantioselective coupling of I-bromo-2- 

methylnaphthalene (2) with its derived Grignard reagent 3 was recently reported to be catalyzed by NiBr2 in the 

presence of the chiral phosphine PPF-OMe6 to produce 2,2’-dimethyl-l,l’-binaphthyl (4) in 94% enantiomeric 

excess (Scheme ~738 Taking advantage of this efficient access to the enantiomerically enriched l,l’-binaphthyl 
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skeleton, we were able to produce the desired bisalkylating reagent, dibromide 5 via bromination of 4 using N- 

bromosuccinimide.7 We have repeated these reactions successfully on 20 g scales. Recrystallization of the 

dibromide gives enantiomerically pure material (58% yield from 2). Dibromide (5)-(-)-S proved to be a suitable 

alkylating reagent, forming spirodiene (El)-(+)-6 in 85% yield upon treatment with cyclopentadiene / sodium 

hydride. The desired Cz-symmetric, fused, cyclopentadiene (S)-(-)-1 was produced without racemizationg by the 

thermolysis of spirodiene (Q-(+)-6 in 79% yield, *a In addition to the Cz-symmetric diene 1, a small amount, ca. 

3% of a diene isomer was also observed in the lH NMR spectrum. 10 The enantiomeric integrity of 1 was 

established by examining its lH NMR spectrum while titrating with a chiral lanthanide-silver shift reagent.laBll 

This ligand is seen by molecular modeling to be less sterically encumbering than the bicyclo[2.2.2]octane-derived 

cyclopentadiene ligands.la This four step synthesis produced (S)-(-) -1 in 40% overall yield from commercially 

available l-bromo-2-methylnaphthalene (2). The chiral phosphine needed for the asymmetric coupling reaction is 

available as either enantiomer,e enabling a facile, large scale synthesis of both enantiomers of this new chiral 

cyclopentadiene ligand (S)- or (R)-1. 

Scheme Ia 

Br 

2 3 (S)-(+)-4 

3;; 8:% - & 7;% - (‘)-(-)-’ 

W-(-)-5 W(+)-6 

aReagents: (a) NiBa (0.03 equiv), (-)-PPF-OMe (0.06 equiv), THF, -5 OC, 5 d; (b) NBS (2.0 equiv), 

benzoylperoxide (0.02 equiv), CC4, hu, 18 h; (c) cyclopentadiene (1.2 equiv), NaH (2.4 equiv), THF, -30 “C!, 2 

h; (d) 0.03 M in toluene, 220 ‘C, 30 h. 

In order to demonstrate the suitibility of binaphthylcyclopentadiene 1 as a chiral ligand, we needed to 

establish that it could be readily metallated. Thus, treatment of the methyllithium-generated anion of 

cyclopentadiene (S)-(-)-1 with cyclopentadienyltrichlorotitanium kf produced the chiral, enantiomerically pure 

substituted titanocene dichloride (S)-(-)-7 which was readily characterized spectroscopically.12 The tH NMR 
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signals due to the four methylene hydrogens are of note in that all are non-equivalent as are those due to the three 

cyclopentadienyl hydrogens in the substituted ring. 

(S)-(-)-7 

Our facile synthesis of the new axially chiral binaphthylcyclopentadiene ligand (R)- or (S)-1 by an 

asymmetric coupling reaction provides the shortest reported access to enantiomerically pure annulated chiral 

cyclopentadienyl ligands possessing Q-symmetry. Based on the ease of synthesizing enantiomerically pure 1 

and our demonstration of successfully metallating this ligand, we anticipate the widespread use of this chiral 

cyclopentadiene in new organometallic reagents for asymmetric synthesis. We are pursuing such uses and will 

report their results in due course. 
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